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BY 

Frank C. Liu 
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ABSTRACT 

This report  examines the effect of a series of evenly spaced moving 
loads on an elastic rectangular plate that is clamped at all edges. Two types 
of loads are treated: (I) a uniformly distributed pressure over a fractional 
length of the plate and (2) an impulsive load. All loads across  a plate a r e  con- 
sidered uniforp. 

The solution of the partial differential equation of vibration of a plate is 
assumed in the form of a double ser ies  with the generalized coordinates solved 
by using the Laplace transform method. Viscous damping is included. 

Based on a two-term approximation, the steady-state dynamic response 
of the plate is obtained in analytical form from which the upper bounds of the 
maximum deflection and maximum bending stress are formulated. Numerical 
examples are given to illustrate the effect of the thickness of the plate, the 
aspect ratio, and the velocity of loads on the dynamic response. Three types 
of resonance conditions are derived. 
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Symbol 

a 

m b 

- 
C 

D 

E 

h 

kin 
- 
L 

DEFINITION OF SYMBOLS 

Definition 

Length of plate 

Coefficient of expansion, equation ( 8) 

Generalized coordinates, equation ( 6) 

Width of plate 

Coefficient of expansion, equation (8) 

Velocity of loads 

Nondimensional velocity of sound 

Equation ( 5 )  

Eh3 , bending stiffness of plate 12 ( i d )  

Modulus of elasticity 

Thickness of plate 

Coefficient of expansion, equation ( i i)  

Length of distributed loads 

Laplace transform operators 

Intensity of load 

Dynamic load function 

a /  b, plate aspect ratio 

Laplace transform variable of t  

Time variable 



DEFINITION OF SYMBOLS (Concluded) 

Symbol 

a! i 

P 

t 

n 

n 

e 

A 

'n 

V 

P 

- 
w n 

T 

Note: 

Definition 

Unit step function 

Dynamic deflection of plate 

Coordinates of plate 

Constant of beam function (a!  1 = .9825, a = I. 0008) 

=A2/Al , amplitude ratio 

= A /Ai n 

Dirac function 

Damping factor 

= C A n  

Eigenvalues of a clamped-clamped beam (Ai=4.7300=1.5056~ 

h2=7.8532 = 2 . 4 9 9 7 ~  ) 

= e@, 

Poisson's ratio 

Mass density of plate 

Bending stress 

Time interval between two consecutive loads 

Eigenfunction of a clamped-clamped beam 

= w /T, natural frequencies of plate n 
-2 - 

A2 
I 

Barred symbols denote dimensional quantity, and unbarred symbols de- 
note nondimensional quantity. 

vi 



TECHNICAL MEMORANDUM X-53506 

ON DYNAMIC RESPONSE OF A RECTANGULAR PLATE 
TO A SER I ES OF M O W  NG LOADS 

SUMMARY 

This report  examines the effect of a series of evenly-spaced moving 
loads on an elastic rectangular plate that is clamped at all edges. Two types 
of loads are treated: (1) a uniformly distributed pressure over a fractional 
length of the plate and (2 )  an impulsive load. All loads across  a plate are con- 
sidered uniform. 

The solution of the partial differential equation of vibration of a plate is 
assumed in the form of a double ser ies  with the generalized coordinates solved 
by using the Laplace transform method. Viscous damping is included. 

Based on a two-term approximation, the steady-state dynamic response 
of the plate is obtained in analytical form from which the upper bounds of the 
maximum deflection and maximum bending stress are formulated. Numerical 
examples are given to illustrate the effect of the thickness of the plate, the as- 
pect ratio, and the velocity of loads on the dynamic response. Three types of 
resonance conditions are derived. 

I NTRODU CT I ON 

The primary objective of this report  is to determine the dynamic re- 
sponse of an elastic rectangular plate subjected to a series of evenly-spaced 
moving loads. Both a uniformly distributed pressure over a fractional length 
of plate and an impulsive load a r e  treated herein. In fact, an impulsive load 
is a limiting case of a uniformly distributed pressure,  when the length of the 
distributed pressure becomes infinitesimal while the product of length and 
intensity takes the finite value, Po. 

There are some practical applications of the preceding mathematical 
model to acoustic problems o r  stress analysis of a shell structure in an  aero- 
dynamic flow. Consider a plate that is an idealized panel of an  airplane wing, 
o r  a skin panel of a large shell structure, while the moving loads resemble 



shock waves o r  pressure disturbance originating f rom a noise source, If the 
loads travel at very high speeds relative to the plate at sonic velocity for  in- 
stance it takes less than one hundredth of a second for  the load to go across  a 
plate. When this is in the same order  of magnitude as the period of vibration, 
resonance may take place under certain relationships between velocity of the 
loads and the natural frequency of the plate. Furthermore, conditions of res- 
onance may be related to both velocity and frequency of the moving loads. A 
determination of the dynamic response of the plate at resonance conditions can 
also be made if the viscous damping factor is known. To a structural designer, 
all this information may be helpful for the determination of the optimum aspect 
ratio and thickness of the panel. 

The assumption is made that the loads travel in  one direction only and 
that the space between two consecutive loads is greater than the length of plate. 
Otherwise, the principle of superposition may apply. 
and dimensions of the plate and loads are shown in Figure 1. Analysis begins 
with the vibration of a rectangular plate with clamped edges. 

The coordinates 

I ;’; I 

FIGURE 1. COORDINATES OF PLATE 
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EQUATION OF MOTION 

- - - -  - - - -  
The response of an  elastic plate, w( x, y, t) , to a dynamic load, p( x, y, t) , 

is governed by the equation of vibration of a plate 

a &  
a n  

with boundary conditions w = -- - - - 0 for clamped edges. The subscripts i,?, 
and ;denote the partial derivatives of w. A symbol with a bar  represents a 
dimensional quantity; the unbarred symbols denote the nondimensional quantity. 

- -  - - 
The function p( x, y, t) of the two types of moving loads to  be treated can 

be expressed 

For distributed loads with length L ( L c  a) 
- -  Q) 

x-L - - - -  - -  - 
P(x,y,t)=Po E [u(t-x/c-k?)- u(;- 7 -k;)] 

C k=O 

where 6 (7) is the Dirac function and u(F) is the unit step function. 

For convenience of manipulation, rewrite equation (1) in the nondimen- 
sional form 

i 
(w-+ 23, + r% ) + wtt = p(x, y, t) 

A i  W Y  YYYY 

The barred and unbarred symbols a re  related as follows 
- 

W=w/a, x=;;/a, y = G / a ,  r = a / b  L= L/a 

The definition of Ai is investigated i n  the succeeding section. 

3 



METHOD OF SOLUTION 

Observing that p( x, y, t) has  a simple expression in  Laplace transform, as 
a first step toward the solution of equation (3 )  , we apply Laplace transformation 
to the partial differential equation with respect to the t ime variable. It follows 
immediately that 

1 -sx/ c T ( w - + ~ $ w  + r4w ) + s2w = P ~ C  ( s ) e  
A i  =YY YYYY 

where 

w = W ( X ,  Y, s) = L W X ,  Y, t)> 
-7s) i / ( i  - e  for  impulse loads 

-sL/ c -7s ( 5) 
((1 - e  ) / s( 1 - e ) for  distributed loads C ( s )  = 

+ + 
Note that the initial conditions w (x, y, 0 ) = w ( x ,  y, 0 ) = 0 have been taken. t 

A well-known approach to the solution of equation (4) is to assume the 
solution in the form [ 21 

m o o  

The t e r m  4 i( z) is the eigenfunction 

clamped beam, 

of the differential equation of a clamped- 

with the boundary conditions @( 0) = @ (1) = @' (0) = 4' (1) = 0. This assumed 
solution satisfies the boundary conditions along all four edges but does not 
satisfy the differential equation. However, the differential equation can be 
satisfied approximately by using the generalized Fourier series expansion. 
The sequence 

Qi (z )  = coshh .z - c0sh.z - a (sinhh.z - sinhjz) i = 1,2,  . . . ( 7) 
1 1 i 1 

4 



forms an orthogonal, complete se t  in the interval 0 to 1. This permits expansion 
of the t e rm on the right-hand side of equation (4) in te rms  of + (x) + n m (y) 

where, as shown in Appendix A, 

,e  = CAn 
n 

n - (-1) ( s + e n ) e  

4am/ Am m odd 

0 
b =( 

m even m 

To take into account the damping effect on the vibration, assume that the damping 
is viscous and has  a viscous damping coefficient of 

e nm + n ( x ) + m ( Y ) .  

Substituting from equations (6)  and (8) into equation (4) and adding the 
damping te rm leads to 

where 

It is now necessary to expand + !' (z) in t e rms  of $J i( z) ; this gives 
J 

5 I 



[ 41 The coefficients of expansion a r e  

I+ r4 + 23kZl1 + ell s + s2 0 

0 + r4 + 2 2 4  kz2ki1 + eZ2 s+s2 

I 
k.. = J @if'( Z) @ .( Z) dz = ( 2  - a.h.)ai/hi 

1 1 1  11 0 

AI 1 al( S )  

Az1 a2 ( S )  

=Pobi C ( S) 

Substitution from equation ( i o )  into equation ( 9) results in a set of an infi- 
nite number of simultaneous algebraic equations in  the generalized coordinates 

00 

(64 + r 4 6 4  +e  s + s 2 ) A  + 2 9 6 ? 6 ? k  .k .A . .=Poa  n ( s )b  m C(s) .  (12) n m nm nm si, j= i 1 J 111 mJ 1J 

n, m = 1,2, . . . . . . 
Evidently, if a large number of equations is used to obtain the solution of 

equation ( i 2 ) ,  the expression of Anm( s) becomes combersome, and the task of 
finding inverse Laplace transforms becomes prohibitive. To serve the purpose 
of the present study, a simple approximation of m = 1 and n = i and 2 is made, 
The solution of All (s) and A21 (s)can then be readily obtained from the reduced 
system of equations 

(13) 
Notice that equation ( i i)  gives k12 = kZ1 = 0; consequently, the first two natu- 
ral frequencies of the plate can be written out directly from equation (13) . 

- 
w = /T= 2 . 2 6 7 ~  

n n  

nn w = d64 + r 4 + 2  S2 2kl1k n n n 

The nondimensional frequencies versus the plate aspect ratio given by equation 
( 14) are plotted in  Figure 2.  
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To further simplify the solution of All and Azi, assume that the damping 
factors for  the first and second modes are equal. 

Hence, the damped natural frequencies of the plate become 

w = w  4-r-F nd n 

Express the solution of equation (13) in the form 

A ni  (s )  = Pobl(c/02 n ) ( s )  +Q n ( ~ ) e - ~ / ~ ] C ( s ) ,  

where 
202 

Determination of the inverse Laplace transform for the two types of loads will 
be given separately. 

Solution for Impulse Loads 

By using the method of partial fractions, R (s) df equation ( 17) and Q (s) n n 
of equation (18) can be  written as a sum of five and four functions, respectively 

and the function , F (s) , are shown in nk’ Qnk’ nk The constants, R 

Appendix B. For  impulse loads, C( s) of equation (16) is as noted in equation 
( 5 ) ,  

I 
C ( s )  = 

-7s I - e  

8 



It has  been shown [ 51 that the inverse Laplace transform of a periodic function 
may be expressed in the form: 

A in which $ &) .is a function of a discrete variable t, and $( t) is the same func- 
tion of the continuous variable t. The Laplace transform pairs of F and $ of 
equation (20) are given in Appendix B. As derived 

i A - C L-l{ Q n ( s )  - 7 s  If nq (2) - f  nq ( t )  +gnq (t) - gnq (t) 
i - e  

Finally, the inverse Laplace transform of equation (16)  may be writ- 

when - T +  - < t < O  L =  0; a n d e  6) = g e), f 6) = f  6) n n n n C 

9 



Substitution from equations ( B-IC) and (B-Id) into equation (22b) yields 

g ( t)  = 3 d 2 B  [I-(-1) sinh ] c s c i 8 ~  s in[0 (t+b)+-y+n 1 fo r t> -  n n n n n n n  C 
(22b') 

n I 

For  a steady-state solution, f (t) and gn( t) can be disregarded because n 
the former decreases exponentially with t ime while the coefficient of the latter 
is of a higher order  of smallness (sinh = ( -1) n, except in  the neighborhood of n 
$8 T = k 7 r .  

A s  shown i n  Appendix B equations (22c) and (22d) can be rewritten as follows 
n 

n 
A A  A A -Cat A 

( 2 3 4  c o s ( w  t -  @ - $ )  d f ( t )  = Ro $o (t) + F e  

A i 
( 23b) 

+?+$)I when - T <  t < - T +  - 
C 

I 
0 when - T + -< 9 < 0, except in  the neighborhood of 

C 

Hence, the two-term steady-state solution of the dynamic response of the plate is 

The Upper Bound of the Maximum Deflection and the Maximum Pending Stress. - 
The maximum deflection and the maximum bending stress of the plate can be ob- 
tained by using equation (24) , provided the greatest absolute value of f( & ($ 
is determined. It is rather  tedious to determine the greatest value of f(%)+&%) ; 
however, the upper bound of this value, as denoted by f'$+g::c , can be written 
out immediately 

A I 
- T < t <  - 7 +- CUT 

(25) 
C 

R ~ $ ~  (-7) + @e +- 

Ro% (-T+;) +$'e 
I 

-7 + - < 2 < 0  C O ( T -  -) 
C 

1 
C 

f::: + g:$ = 

Hence, the upper bound of the maximum deflection may be expressed in the form 



where 
~~a~ 

WO= aPobi@ i (Q) = .02812 - ( forv  = i / 3 )  Eh3 

The location of the maximum deflection which is denoted by x* in the above 

equations can be determined numerically as a function of p from the equation 
W 

. The graphs of x* vs  p and 3 vs p are shown in 
1 '4 n where @ (x) = - - 

dx W 'n 
n 

Figure 3. 

B 

FIGURE 3. and x* VERSUS p 
W 



The upper bound of the maximum bending stress in x-direction can be 
determined by using the stress equation 

with w( x, y, t) given by equation (24) . Analogous to equation (26-l) , express 
the upper bound of bending stressa;:< in the form 

where 

I 
c0 =PobiA: cp1( i )Eh/2  (1-u)a  = 0.47i8Hoa2 / h 2  ( fo ru=- )  3 

s =  S i ( X * )  + p s, ( x * )  ( 32) 
(T (T 

The location of the maximum bending stress x:: can be determined numerically 
as a function of p f rom the equation (T 

or 

4 y' (x) - 0.76545 VI? hf( x) + 4.5768p [+ 2"' (x) - 0 . 2 7 7 7 ~ 3 4  '2(xd = 0 

d3 q n  . The graphs of x:: vs p and S vs  p are plotted I 

n 
where +" ' (x )  = .x3 n fJ 

in Figure 4. 

To summarize, the procedure of computing the upper bound of the max- 
imum deflection and the maximum bending stress is: 

I. Determine w f rom equation (14) o r  Figure 2 n 
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2.  Compute f ::: and g:I: by using formulas in Appendix B and equation (25) 
n n 

3. Obtain A and p from equation (27) n 

4. Read CP and S from Figures 3 and 4, respectively 

5.  Calculate %:I: and ‘a::< from equations (26-1) and (30-1) , respectively 
X 

Three Special Cases, p >> i ,  p <c I and p = I. - The three extreme cases, 

namely, c >> w / A 

Physically speaking, the first two conditions say that the frequencies of the ve- 
locity waves produced by the moving loads a r e  very high and very low, respec- 
tively, in comparison with the natural frequency of the plate, and the third is a 

n n n 
c << w n/ A and c =w n/  An , deserve special attention. 

n n ’  



condition of resonance at which the magnitude of the dynamic response has  the 
greatest value. For  these three cases,  the constants given by the table in Ap- 
pendix B and equations (21) and (B-2) have the approximate expressions given 
in Table I. 

TABLE I. APPROXIMATIONS FOR THREE SPECIAL CASES 

B 

C 

D 

E 

F 

G 

RO 

R 

Q 
5 
E 
A 

A 
C 

D 

p >>I n 
<< I n 

Note that in  the above table ( ) = cosh 5 UT - cosw d~ and 

Pn = 1 

Recall the original assumption that 5 is much smaller than one. 



Case I 

reduce 

I .  

The values of w /A fo r  plate aspect ratio r = to 4 are as follows n n  

r = i  r = 2  r = 3  r = 4  
n = i  0.341 0.933 I. 975 3 .450  

n = 2  0.419 0.727 I. 326 2 .205  

Since d 2 B  + Ro is negligible in comparison with #e 
equation (27)  to 

in equation ( 2 5 ) ,  

sin2 9 w T "3 h n u i  (cosh 5 0  T -  cosw T )  

d 

n nd 
A 2 - (-1) 

n [. (34)  

This expression shows that the magnitude of the dynamic response is independent 
of the velocity of the moving loads when c>> w /An  

Case11 p << I o r c  <<w / h  

n 

n n n  

Since T >I / c o r  T is large, use the approximation 

This results in 

Thus, if the third te rm in the above equation is much smaller than one, the 
magnitude of the dynamic response is directly proportional to the velocity of 
the moving loads when c < < w  / A n n' 

I -  

Case 111 pn = i o r  C = w n / h n .  

The magnitude of the dynamic response at resonance can be written in the 
form 

At resonance, A is approximately inversely proportional to the damping factor 5 .  n 

i5 



Solution for Distributed Loads 

The inverse Laplace transform of equation (16)  fo r  the case of distributed 
loads becomes more cumbersome than for the impulse loads because of the com- 
plexity of C( s) given by equation ( 5 ) .  It will simplify the problem somewhat if 
the damping factor is assumed equal to zero. Now, rewrite equation (16) in the 
form 

where 

1 
+ I-1 ( i - p 2  ( z2i ",2) (38b) 

I - -  - 
s u2(1 - p 2 )  

It follows immediately that 

( 3 9 4  

(39b) ) 

-et r(t) = L-'{R(s)} = 2 + R s i n w ( t + y )  +R ' s inQ ( t + & r )  +R"e 

q(t)  = L-' { Q ( s ) }  = i + Qsinw ( t  - + Q'sinO(t -4. ) 

where 

r 
Q =  L 2  (1 - p 2 )  

R =  --- 2 p 3  d 7  
4 4- 

w (1-I-1) 

- R' = Q' = f i , /< i  - p 2, R'' = - i /  ( i  + p 2 )  = tan-lp 

16 



Knowing the inverse Laplace transform of R (s) and Q (s) , the inverse n n 
Laplace transform function of equation (37) denoted by 

A n (t)  = L-'{Anl (s) 1 
can be illustrated diagrammatically (Fig. 5) . This function can be expressed 

FIGURE 5. TIME HISTORY OF r( t) AND q( t) 

as sectional, continuous functions in four regions, a to d . With the aid of 
Figure 5 and the shorthand notation 

K 

k =  0 
f ( K , a )  = f ( t - k T - a )  u ( t - k T - a )  

17 



18 

write A (t) as follows n 

Region a. K T < ~ < K T +  L/ c 

L 1 
Region b. KT+ -< t <KT + - 

C C 

L i 
An(t) = rn (K, 0) - r n ( K , c )  - ( - l )n[qn(K- i ,  c) 

'nu n 

1 l + L  Region c. KT + - c t < KT+ - 
c ,  C 

I 

Region d. KT+ - + < t <  ( K  + i) T 
C 

Making use of the formulas derived in  Appendix C, combine the preceding four 
equations into a single equation of variable to which is defined 

t o = t - K 7 w i t h K = i , 2 ,  ... a n d K T < t <  ( K + i )  T 



hw 
M +l L 

MUTCOS{W [ to+(K--) 2 T - = ] +  7) 

n P + i  2 + L  - (-1) Qsin&PwT cos{ w [ to  + (K- -) T - - ] -y}) 
2 2c 

L + RCOS[U ( t o + K T -  2c +yJ 

2 + L  - (-1)"Qcos [w( to+ KT - 2 ~ )  - y]] 

M+ 1 L + 2 s i n i h L  c s c i c h ~  R' sinsMch7 cos{ ch [to 

- ( -1) Q'sin&PchT cos {ch [to + (K- -5T - TI - t r 1) 

- (-1) Q'COS [ch(to + KT - - ) -an]] 

+(K- - T - -  ]+ $7r } 2 ) 2c 
P +  2 + L  

[ 
n 

2 
L 

2C + R'COS [Ch(to+KT - - )  + i n ]  

n 2+ L 

-Ch( t o  + CT) hL -ch(M+ 1) 
2c 

)-I + R"e (i-e ) [ i -e  1 ( 1 - e  

- c Ato] 

- (-1) n D [ l + Q s i n [ w ( t o -  -) i - y ]  + Q'sin [ c A ( t O - - )  i - + T I ]  

+ C[ 2 + R s i n ( w t o + y )  + R'sin ( ch to+  i n )  + R"e 

C C 

The values of the constants M, P, C, and D in the above equation are as follows: 

t* 

0 5  t O ' L / C  

L /c  5 to 5 i /c 

i/c 5 t o  5 ( L + i ) / c  

( L + i ) / C  5 to (7 

M 

K- 1 

K 

K 

K 

P 

K-1 

K-1 

K-1 

K 

D 

0 

0 

i 

0 

Note that f o r  brevity all the subscripts ''n" are omitted from the symbols A( t) , 
R, R', R"Q,  & I ,  A, y a n d w .  

For  the case K < 1, this problem can be treated as a plate subjected to a 
single moving load and is given in the next section. 



NOW, the dynamic response of the plate is 
2 

And 

Then, the c!ynamic bending stress in x-direction is 

:$ 
Using the symbol A to represent the maximum absolute value of A (t) and 

p = A2/Al-'*, obtain the upper bound of the maximum deflection 
* J. n n 

wp4: Q (26-2) w:k = - 

and the upper bound of the maximum bending stress 

where thesymbolswo, go, 

and (30-1). 
and S are defined previously in equations (26-1) 

It is difficdt to tell at what time region A'" occurs. This suggests a pro- n 
cedure of computing the greatest value of A (t)  in each region and choosing the 

largest  one among them. Let F to F denote the greatest value of A (t) in  

regions a to d; hence 

n 

a d n 

A:' n = Max (Fa, Fb, Fc, Fd) ( 45) 

A simple but crude method of determining F is to let all the sines and cosines 
of equation (41) equafto one and add the absolute value of all terms.  
be refined by first combining the cosines of the same frequency and then summing 
the absolute values te rm by term. 

This can 



A Single Moving Distributed Load - For a single moving distributed load, the 
load function given by equation (5 )  becomes 

) (46) 
I - s x / c  -sL/ c 

L {P (x,  Y, t )> = -e (I - e  
S 

Consequently 

Pnb 

n n  
rn (t) - rn( t-L /c)u(t-L/ c) { Ani ( s )  1 = A w'2 ( 

-( -1) "[ qJt-l/c) u( t-l/c) - q (t- - I+ L 
n C C 

Hence, equation (41) reduces to 

2 sin w ~ / 2 c  (AR cos [ w n ( t - ~ / 2 c )  + yn 3 n An(t) = = {  A u2 n n n  

( 47) 

- BQn cos [ w (t- i + i L )  -yn 1) n C 

+ 2 si& L AR' cos [ e  (t-L/2c) + T ]  
n ( n  n 

I +  'L 
- ( - I ) " B Q ~  [ e  (t- -a ) -t. 1) n C 

-AR" ( eAnL-i ) e -9 nt 

+ C  2 + R  sin(w t + y )  + R ' s i n  ( 9  + ; T )  +R" e - grit] 
- ( - i ) n D ( i  +Q s i n [ u  ( t - l /c)  - y  ] + Q' s i n [ 9  (t-I /c ) -  &])I (48) 

f n  n n n n n 

n n n n n 

where A, B, C and D have the following tabulated values 
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RESONANCE OF PLATE 

I 22 

There are three conditions which may cause resonance of the plate to take 
place. 

1 i. Frequency resonance, zw T = kn n 

For  the case of impulse load, the functions Z) and z,h n i  n2 become very large 

if the damping factor is very small  and for  distributed load A (t) , given by 

equation (4i), become infinite. The critical values of 7, T"= 2 nk/w 

the plate aspect ratio are plotted in Figure 6. 

n 
versus  

n' 

2. Velocity resonance, ,u = i o r  c = w n /  hn 

When the frequency of the velocity waves produced by the traveling loads 
coincides with the natural frequency of the plate, the coefficients R and Q be- 

come very large for  a small  damping factor, as shown in Appendix B for  the 
case of impulse loads. For distributed loads, it can be seen from equations 
(38a) and (38b) that the inverse Laplace transforms will have a t e r m  

n n 

k k 

The critical values of c ,  c>k= w /A n n' 
also in Figure 6. 
is c 

s s  

versus the plate aspect ratio are plotted 

The nondimensional velocity of sound at standard atmosphere 
= c' 'T /a E 0. Oi (a/h) for  both steel and aluminum plates. 

3. Velocity-frequency resonance, CT = 2k7r / h  

Under this condition both gn( t) , given by equation (22b'), and An( t) given 

n 

by equation (4i), become unbounded. The critical values of T versus c are 
plotted in Figure 7. However, because of the smallness of the coefficient of g ( t ) ,  

this condition should not impose serious response for the case of impulsive loads. 
n 
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EXAMPLES AND DISCUSSION OF RESULTS 

Examples on a plate subjected to a ser ies  of impulses: 

Example 1. - Consider a steel plate with the following data 

a = 0.6096m (24 in. ) ,  5 = 0. I, v = i / 3  

E = 20.67N/ m2 (30 x I O 6  ps i ) ,  p = 7855 Kg/ m3 ( 15.24 slug/ ft? ) 

Consider also that velocity of the moving impulses is in the neighborhood of the 
speed of sound in a standard atmosphere. Now, examine how the stiffness of the 
plate affects the dynamic response by taking h = 0.0254 mm (0 .01  in. ) and 
h = 0.0803 mm (0.03162 in . ) ,  respectively. 

Case I. h = 0.0254 mm (0. Oi in. ) 

Froln the given data, calculate 

T = -  c = 23.41 a2 &= 0.04186 T =  l / T T =  0.09 

where c is the nondimensional velocity of sound. The values of p = chn/w 

of this velocity for  plate aspect ratio r = 1 to 4 are as follows 

S $1 D 

S n 

r = l  r = 2  r = 3  r = 4  

n =  I 68.7 25.1 11.84 6.78 

n = 2  55.7 32.1 17.56 10.63 

The values of Ai and p a r e  computed f o r  the arbitrari ly chosen velocities 
c = 15, 20 and 25. The results show that there is no appreciable difference 
for  the three velocities because c is much greater thanw /A . Figure 8 shows Ai 

and p versus r. Note that for these velocities the approximate expression 
given by equation (34) is applicable. 

n n  

To calculate the upper bound of the maximum deflection and maximum 
bending stress, first read the value of Ai and p from Figure 8 and 9 and S 
from Figures 3 and 4, respectively; then use equations (26-1) and (30-1) . 
The results of w * and u$ versus the plate aspect ratio are plotted in Figures 
9 and I O .  
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FIGURE 8. Ai AND p VERSUS r OF CASE I, EXAMPLE 1 

Case I1 h = 0.0803 mm (0.03162 in . ) .  Increase the thickness of the plate 
by times that of Case I, the values of T, c and p are reduced to i/ 10 

of the values calculated in Case I ( T = 0.9) . Plots of Ai and p versus r for  
c = I. 5, 2.0 and 2 .5  ( c  is 2.341 for  this case) are shown in Figures 11 and 12 

respectively. Figures 9 and 1 0  show the upper bound of the maximum deflection 
and maximum bending stress versus r. 

n 

S 

Example 2. - Considering again a clamped plate subjected to  a series of 
impulses, assume that the nondimensional velocity of the impulses are small 

I c’ << I. By applying the approximation given - LW ( T -  so that c <<a /h and e n n  
by equation (35) , obtain Ai and p for  various values of r. The upper bounds 
of the maximum deflection and maximum bending stress are shown in Figure 13. 
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FIGURE 12. p'"VERSUS r OF CASE 11, EXAMPLE i 
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Discussion of Results. - For a given frequency of the moving impulsive 
loac 3 ,  the effects of the thickness of the plate, the plate aspect ratio, and the 
velocity of the loads on the dynamic responses are illustrated in Figures 8 to 
13. Some interesting results have been observed: 

I .  If c>> w / A  ( i. e. ,, with high velocity loads moving on a thin plate) ,the n n  
dynamic response of the plate is almost independent of the velocity. 

2. If c<< wn/ An, the dynamic response is directly proportional to 

the velocity. 

3. The three conditions of resonance with either n = I o r  2 are: 

29 



(3 )  gch T = kn n (this condition has no significant in reality) 

For a plate with large damping, condition (1) is a predominant factor; 
while condition (2)  is more important for small damping. 

4. The peaks of the curves in Figure 11 correspond to the critical values 
of c and T given by Figure 6.  

5 .  
to one. 
equation (13) is adequate (more terms are required to cope with the higher modes 
if  r is large). 

The value of p (=A2/Al)  is small for a plate with panel aspect ratio close 
This is an indication that the two-term approximation used in solving 

6. Since the w::< and (T::: presented here are the upper bounds of the dynamic 
response; in reality, these values could be considerably higher than the actual. 
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APPENDIX A. FORMULATION OF a,(s) 

By definition of equation (8),  

-sx/ c 
a ( s ) =  J e [ c h u  - coshx - Q! (shhx - sinhx)]dx 

0 

-s/ c 
- chh - Ashh) (shh - sinh) + (s shh + Achh) ( chh-cosh)] 

shh - sinh 

32 

Using the approximations 

n 
Q! =I, cosh = 0 ,  sinh = (-1) , andchh Eshh n n n n n' 

obtain 
2c( chn)2 s + ch 

( s + chn)( s2+ c 2 2 )  a (s) E n 



- 
k - 
0 

I 

2 

3 

4 - 

APPENDIX B. FORMULATION O F f M  AND g(t) 

The terms contained in equation (19) are tabulated as follows: 

Laplace Transform Pairs and Coefficients of R( s) and Q( s) 

s +  e 
s +  fw 

W d  

(s+ 5w)2+wA 

(S+ CW)  2+"i  

S 
s2 + e2 

e 
s2 + e2 

-e z e 
e e T - i  

- s w  Z -Cw( Z+T)  cosw e coswd ( Z S T )  - e 

-5w z e sinwd (z +T) - e s inwz  

Rk 
I 

I si 

2p2RoBD 

2p2RoBF 

-BD 

BE 

Definition of Constants 

C = [ (  1 + S52p2]  B =  [ ( l - p 2 ) 2 + 4 5  2 p 2 ] -1 

D = I - p2 + 25p E = 1 - p 2 - 2 5 p  

F = p(p2  -1) - 5(p2-  3) G = p(p2  -1) +5(p2+1)  

- 
'k 

0 

- 

-CE 

CG 

BE 

BD 
- 

Notice that the subscripts "n" a r e  omitted from all the symbols except s, z ,  5 ,  
and T, and that the constants B to G a re  approximations after neglecting the higher 
order  terms of 5 .  

33 



Further simplification by combining $1, $2 and $3, $4, respectively, 
results in 

- t U ( Z + T )  c o s ( 0  z - d }  d 
=Q{e-cwz cos [w d (z+T) - E ]  - e  

where 

p z ~ ~ ~ 4 i G - F  5 = tan-' (F/D) R =  
coshto T - cosw T d 

E = tan-'(G/-E) 
C d Z F  

2 (cosh 5w T - cosw T ) Q =  
d 

Y = tan-' ( E /  ID). 

Substituting from equation (B- la )  into equation (22c) and combining terms,  
we obtain 

where 
I 

1 
ZT) 

n - F ; w ( L T -  

n -  

- (-1) Qe 

w 
C 

1 
s w ( L T - F ) C O S (  E + - - W  LT) 

4 =tan-' 
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. 

. 

. 

Then, 

where 

F 
A 

# 
sinw T d 

(B-5) 

where 

Hence, 

A 
2 ( ? ) = f l B s i n [ e ( t + & )  + y + G ] .  
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APPENDIX C. FORMULATION OF EQUATION (40) 

In the following, reformulate the typical t e rms  contained in equation (40) 
into simple form; 

i. The unit step functions 

1 k T + i / c 5 t 5 k T + ( L f i ) / c  

0 k T + ( L + i ) / c 5 t S ( k + i ) T + i / c  
[U ( t  - kT - I/c) - u ( t  - kT - 

2 .  The exponential functions 

K 
exp [-ch(t - kT) u ( t  - k7) - e-[-ch(t*- k~ - L/c)] u(?- k7-  L/c) 1 k=O 

where to = t - &with KT<t< ( K +  i ) T  . 
3.  The sine functions 

Making use of the identity, 

K 

k= 0 
sin k 0  = sing(K + i) 0 sinBK0 csc@ , 

we obtain 

. 

sin[ w (t-kT) +a] u ( t  - kT) - sin[w (t-kT-L/c) +a] u(t-kT- L / c )  
k =O 
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Psin- W L  2c { s i n $ h r c s c a w T c o s  - T ) + @  K-i 2 1 + c o s [ o ( t o +  KT) + @ ]  

if K T + L / ~  5 t 5  ( K +  i ) T  I 
1 W L  

2c ?sin- ( s i n 4  (K - i ) w T c s c  ~ T C O S  [o ( t o +  & K ~ ) + @ ] + c o s [ w  ( to+ KT) + @ I  

where @ = CI! - w W2c. 
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